WHAT IS CLAIMED IS:

1	1. A method of material surface treatment in a substantially
2	downstream position of a plasma source, the method comprising generating a plasma
3	discharge including a gas-C, the gas-C comprising a Gas-A molecule containing
4	essentially hydrogen as an element and a Gas-B containing essentially a halogen and/or a
5	halide; wherein said plasma discharge is substantially free from an oxygen bearing
6	species.
1	2. The method of claim 1 further comprising injecting a Gas-D in the
2	downstream of the plasma of Gas-C and setting objective surface in downstream of the
3	Gas-D injection.
1	3. The method of claim 1, wherein using the molecule and/or
2	compound of chlorine, bromine and/or iodine as Gas-B.
	- L.
1	4. The method of claim 2, wherein using the molecule and/or
2	compound of chlorine, bromine and/or iodine as Gas-B.
1	5. The method of claim 4, wherein using the molecule and/or
2	compound of chlorine, bromine and/or iodine as Gas-B does not containing oxygen atom.
-1	6. The method of claim 5, wherein using the molecule of chlorine,
2	hydrogen chloride, bromine, or hydrogen bromide as Gas-B.
1	7. The method of claring 5, wherein using the molecule of chlorine,
_	
2	hydrogen chloride, bromine, or hydrogen bromide as Gas-B.
1	8. The method of claim 6, wherein the flow rate of the molecule of
2	hydrogen-chloride or hydrogen-bromid Gas-B in total Gas-C flow is defined as the
3	ratio of amount of hydrogen atom in Gas-B to that in Gas-A is larger than 1/480.
1	9. The method of claim 2, wherein gas containing silicon as its
2	element is used as Gas-D.
1	10. The method of claim 2, wherein gas containing carbon as its
2	element is used as Gas-D

1	11. The method of claim 2, wherein gas containing fluorine as its
2	element is used as Gas-D.
1	12. An apparatus for treating material surface downstream of a plasma
2	source, the apparatus comprising:
3	a treatment chamber;
4	a plasma discharge area to generate a plasma comprising a mixture of a
5	gas composed of molecules dontaining hydrogen atom as an element and a gas containing
6	molecules and/or compound of chlorine, bromine, and/or iodine, the plasma discharge
7	connecting with the treatment chamber, the treatment chamber being downstream from
8	the plasma discharge area and the treatment area being maintained in a vacuum;
9	a stage for setting an object in the treatment area; and
10	an inner wall surface of the discharged area, the inner wall surface
11	comprising a silicon nitride material.
1	13. The apparatus in claim 11, wherein the at least a gas inlet is set
2	between the plasma discharge area and the upstream of the stage.
	(
1	14. The apparatus in claim 11, wherein at least a part of the plasma
2	discharge area is composed of silicon nitride or quartz whose surface exposed to the
3	plasma is covered by silicon nitride.
1	15. The apparatus in claim 12, wherein at least a part of the plasma
2	discharge area is composed of silicon nitride or quartz whose surface exposed to the
3	plasma is covered by silicon nitride.
1	16. An apparatus for treating a silicon wafer, the apparatus comprising:
2	a code directed to transferring a silicon wafer comprising an upper surface
3	in a vacuum chamber using a transferring means, the silicon wafer including a layer of
4	native oxide overlying the upper surface of the silicon wafer;
5	a code directed to switching a controller for applying a gaseous plasma
6	discharge on the layer of native oxide to substantially remove the native oxide without
7	physically damaging the surface of the silicon wafer;
8	wherein the gaseous plasma discharge is derived from an upstream plasma
9	source from the vacuum chamber, said upstream source comprising a hydrogen bearing

10	species and a halogen bearing species; wherein the upstream plasma source being
11	substantially free from an oxygen bearing species.
1	17. The apparatus of claim 16 wherein the gaseous plasma discharge is
2	substantially free from an oxygen bearing species.
1	18. The apparatus of claim 16 wherein the silicon wafer is disposed on
2	a stage, the stage being surrounded by an inner surface coated with a silicon nitride
3	compound.
1	19. The apparatus of claim 16 wherein the upstream plasma source and
2	the stage is positioned to each other to substantially eliminate any physical influence of
3	the gaseous plasma discharge.
1	20. The apparatus of claim 19 wherein the gaseous plasma discharge is
2	maintained in a silicon nitride material in the vacuum chamber.
. (add A47
	00037